2005 Vol. 7, No. 12 2489–2491

An Anionic Strategy for Three- and Four-Component Coupling Reactions Leading to Ketone Frameworks Based on Vinylogous Conversion of Dilithio Ketone α,β -Dianions

Shin-ya Yamato,[‡] Go-hei Yamamura,[‡] Mitsuo Komatsu,[‡] Masashi Arai,[†] Takahide Fukuyama,[†] and Ilhyong Ryu*,[†]

Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan ryu@c.s.osakafu-u.ac.jp

Received April 14, 2005

ABSTRACT

Ketone α , δ -dianions are generated by vinylogous extension of ketone α , β -dianions with alkenes such as vinylarenes, vinylsilanes, and vinyl sulfides, which then undergo reactions at the δ and α positions with different electrophiles, creating ketone frameworks. This work represents a cascade-type anion method that achieved three- and four-carbon component assembly reactions leading to ketones.

The ubiquitous nature of ketones in the structures of a wide variety of pharmaceutical and material science target molecules has resulted in extensive efforts to uncover efficient cascade strategies for their synthesis. We report herein a unique dianionic strategy, which is based on the vinylogous extension reaction of dilithio ketone α,β -dianions to dilithio

 α,δ -dianions as a platform for the construction of ketone frameworks.

We have recently shown that dilithio ketone α,β -dianions, having enolate/allyl anion structure $\mathbf{2}$ with Z geometry, can be conveniently generated by treating β -dichlorobutylstannyl ketones $\mathbf{1}$ with 4 equiv of n-BuLi.⁴ Once prepared, these structures participate in a variety of synthetic transformations.^{4,5} We believed that ketone α,β -dianions $\mathbf{2}$ thus formed would also serve as precursors for ketone α,δ -dianions, whose synthetic potential is yet to be explored.⁶ If the ketone α,β -dianion $\mathbf{2}$ would undergo carbolithiation to alkenes,⁷ the envisaged ketone α,δ -dianion $\mathbf{3}$ would be formed (Scheme

[‡] Osaka University.

[†] Osaka Prefecture University.

⁽¹⁾ For general aspects of cascade reactions, see the thematic issue of *Chem. Rev.* **1996**, *96* (1). Also see: *Multicomponent Reactions*; Zhu, J., Bienaymé, H., Eds.; Wiley Science: Amsterdam, 2005.

⁽²⁾ For reviews on anion chemistry, see: (a) Najera, C.; Yus, M. Curr. Org. Chem. 2003, 7, 867. (b) Katritzky, A. R.; Piffl, M.; Lang, H.; Anders, E. Chem. Rev. 1999, 99, 665. (c) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2282. (d) Marek, I.; Normant, J. F. Chem. Rev. 1996, 96, 3241. (e) Beak, P.; Basu, A.; Gallagher, D. J.; Park, T. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552.

⁽³⁾ For reviews on dianion chemistry, see: (a) Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4125. (b) Thompson, C. M. Dianion Chemistry in Organic Synthesis; CRC Press: Boca Raton, FL, 1994.

^{(4) (}a) Ryu, I.; Nakahira, H.; Ikebe, M.; Sonoda, N.; Yamato, S.; Komatsu, M. *J. Am. Chem. Soc.* **2000**, *122*, 1219. (b) Nakahira, H.; Ikebe, M.; Oku, Y.; Sonoda, N.; Fukuyama, T.; Ryu, I. *Tetrahedron* **2005**, *61*, 3383. (c) Nakahira, H.; Ryu, I.; Ikebe, M.; Kambe, N.; Sonoda, N. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 177.

Scheme 1. Concept for Ketone Framework Construction by an Anionic Four-Component Cascade Approach

$$\begin{array}{c} \text{OLi} \quad \text{Li} \\ \text{R} \\ \text{Z} \\ \\ \text{R} \\ \text{G} \\ \text{R}'X \\ \text{R$$

1). If carbon electrophiles attack the δ position of the resulting dianions preferentially, the Z-lithium enolate **4**

Table 1. Conversion of Ketone α,β -Dianions **2** to Ketone α,δ -Dianions **3** by Vinylogous Extension^a

entry	α,β-dianio	n	conditions	α,	8-dianion	product (yield ^b)
1	2a (R = <i>t</i> -Bu)		SiPh ₃ (0 °C) Me ₃ SiCl (-78 to 0 °C)	7	[OSiMe ₃ SiMe ₃ Ph ₃ SiPh ₃
2	2b (R = <i>sec</i> -Bu))	SPh (0 °C) Me ₃ SiCl (-78 to 0 °C)		\ \ \ \	OSiMe ₃ SiMe ₃ Ph SPh 5 (61%)
3	2c (R = Ph)		SPh (0 °C) Me ₃ SiCl (-78 to 0 °C)		Li Li SI	OSiMe ₃ SiMe ₃ Ph SPh 6 (59%)
4	2d (R = <i>n</i> -Hex)		SPh (0 °C) H ₂ O (0 °C)	n-Hex	S 3d	Ph <i>n</i> -Hex SPh 7 (65%)
5	2a	,	Ph Ph (-78 to 0 °C) H ₂ O (0 °C)		Li Li Ph 3e	0 Ph Ph 8 (61%)
6	2a	1)	OLi (0 °C)° H ₂ O (0 °C)	7	OLI LI	9 (70%) OH
7	2a	,	Me ₃ Si	Ph \	SiMe ₃	Ph SiMe ₃
				Y OI	1	Me ₃ SiMe ₃ Ph 10'(15%)

 a Reactions were conducted on a 1 mmol scale. b Isolated yield by column chromatography on silica gel. c Generated in situ from β -(hydroxymethyl)styrene and n-BuLi.

Table 2. Three- and Four-Carbon Component Coupling Reactions Based on Ketone Dianions^a

entry	α,δ-dianion	electrophile (conditions)	product (yield ^b)
1	OLi Li Si	1) Br (1.2 equiv) (-78 °C) 2) Me ₃ SiCl (1.2 equiv) (-78 to 0 °C)	OSiMe ₃ SiPh ₃ 11 (63%)
2	3a	1) n-Hex-Br (2 equiv) (-78 to -20 °C)	G n-Hex
		2) MeOH (-20 °C)	c 12 (63%) G = Ph ₃ Si 13 (88%) G = OH
3	3a	1) n-Hex-Br (2 equiv) (-78 to -20 °C)	O G n-Hex
		2) Br (3 equiv) HMPA (-78 to 20 °C)	c 14 (62%) (60/40) G = Ph ₃ S 15 (70%) (60/40) G = OH
4	OLi Li	1) CO (1 atm) Ph ₃ (20 °C)	OSiMe ₃ SiPh ₃
•	3h	2) Me ₃ SiCl (2.2 equlv) (-78 to 0 °C)	OSiMe ₃ 1 6 (53%)
5	За	1) Me ₂ NCHO (1.1 equiv) (-78 to 0 °C) 2) H ₂ O (0 °C)	O SiPh ₃ H O 17 (53%)

 a Reactions were conducted on a 1 mmol scale. b Isolated yield by column chromatography on silica gel. c (1) Bu₄NF (5 equiv), THF, reflux, 1.5 h; (2) KF (2 equiv), H₂O₂ (3 equiv), NaHCO₃ (1 equiv), THF/MeOH = 1/1, reflux, 2 h.

would then result. This structure can then participate in the rich metal enolate based synthetic chemistry.⁸ Alkylation of the enolate **4** would lead to four-component coupling product **5**. Thus, we launched this study in the hope of exploring a novel anionic cascade-type strategy available for the construction of ketone frameworks.

We began by studying the carbolithiation reactions of ketone α,β -dianions 2 with several alkenes, such as vinyl-

2490 Org. Lett., Vol. 7, No. 12, 2005

^{(5) (}a) Ryu, I.; Ikebe, M.; Sonoda, N.; Yamato, S.; Yamamura, G.; Komatsu, M. *Tetrahedron Lett.* **2000**, *41*, 5689. (b) Ryu, I.; Ikebe, M.; Sonoda, N.; Yamato, S.; Yamamura, G.; Komatsu, M. *Tetrahedron Lett.* **2002**, *43*, 1257.

⁽⁶⁾ Ketone α, δ -dianions are a very rare class of dianions, see: Lansbury, P. T.; Spagnuolo, C. J.; Zhi, B.; Grimm, E. L. *Tetrahedron Lett.* **1990**, *31*, 3065

⁽⁷⁾ For a review on carbolithiation, see: Knochel, P. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: New York, 1991; Vol. 4, pp 865–911.

⁽⁸⁾ For reviews on lithium enolate chemistry, see: (a) Heathcock, C. H. In *Modern Synthetic Methods*; Scheffold, R., Ed.; VCH: New York, 1992; Vol. 3, pp 3–102. (b) Caine, D. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 3, pp 1–63.

arenes, vinyl sulfides, and vinylsilanes, as described in Table 1. The reaction of 2a with trimethylvinylsilane was problematic, since abstraction of a methyl proton competed to some extent. However, triphenylvinylsilane worked without difficulty. Thus, when 1 equiv of triphenylvinylsilane was treated with a THF solution containing 2a at 0 °C for 1 h and the resulting reaction mixture was quenched with 2.2 molar equiv of trimethylchlorosilane, the corresponding bissilvlated product 4, a Z-enol silvl ether, was obtained in 70% isolated yield (entry 1). This result suggests that dianion 2a underwent efficient carbolithiation to vinylsilane to give the envisaged δ -silyl- α , δ -dianion 3a. Addition of α , β -dianion **2b** (R = sec-Bu) to vinyl phenyl sulfide also took place to give δ -sulfur functionalized α, δ -dianion **3b**, which was transformed into the corresponding bis-silylated product 5 after quenching with chlorosilane (entry 2). Although treatment of dianion 2a with styrene caused anionic polymerization, substituted vinylarenes, such as 1,1-diphenylethylene and 2-hydroxymethylstyrene, underwent smooth carbolithiation to give the corresponding ketone α, δ -dianions (entries 5 and 6). When a styrylsilane was used as the alkene component, an 83:17 mixture of regioisomeric dianions was formed in favor of phenyl-stabilized dianion 3g (entry 7).

With this vinylogous route to ketone α,δ -dianions optimized, we then focused our attention on C-C bond formation at δ and α . We employed δ -silicon functionalized α,δ -dianions as models, with the results summarized in Table 2. Treatment of α,δ -dianion 3a with allyl bromide at -78 °C resulted in δ -selective allylation to yield a lithium enolate, which was then transformed to an enol silyl ether 11 through treatment with trimethylchlorosilane (entry 1). Similarly selective alkylation by hexyl bromide took place exclusively at the δ -position (entry 2). In this case, the resulting enolate was quenched by methanol to give 12. The treatment of thus generated enolate with allyl bromide/HMPA gave a four-component coupling product 14 as a 60/40 mixture of

diastereomers (entry 3). In all cases, the C-Si bond was easily converted to a C-OH bond by Tamao-Fleming oxidation.⁹

One-carbon extension reactions using carbon monoxide¹⁰ and DMF were also examined (entries 4 and 5). Thus, the reaction of a δ -silicon-functionalized ketone α, δ -dianion, derived from dianion **2e** (R = i-Pr) and vinyltriphenylsilane, with carbon monoxide gave the corresponding bis(lithium enolate), whose stereochemistry was Z for the ketone enolate portion and E for the acylsilane enolate portion (entry 4). On the other hand, reaction with DMF resulted in selective δ -formylation without a silicon shift (entry 5).

In summary, we have shown that a new class of ketone α, δ -dianions **3** are easily accessible by vinylogous extension reactions of ketone α, β -dianions **2**. Based on this key transformation, an unprecedented anionic method for assembling three- or four-carbon components to construct diverse ketone structures was achieved. Further work on ketone dianion chemistry is now ongoing in this laboratory.

Acknowledgment. I.R. is grateful for a Grant-in-Aid for Scientific Research on Priority Areas (A) "Reaction Control of Dynamic Complexes" from the Ministry of Education, Culture, Sports, Science and Technology, Japan, for financial support.

Supporting Information Available: Experimental procedure and spectral data for all products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL050813Y

Org. Lett., Vol. 7, No. 12, 2005

⁽⁹⁾ Wanzl, G.; Knölker, H. J. *Synlett* **1995**, 378. For a review on the oxidation of C—Si bonds, see: Jones, G. R.; Landais, Y. *Tetrahedron* **1996**, 52, 7599

^{(10) (}a) Murai, S.; Ryu, I.; Iriguchi, J.; Sonoda, N. J. Am. Chem. Soc. **1984**, 106, 2440. (b) Ryu, I.; Yamamoto, H.; Sonoda, N.; Murai, S. Organometallics **1996**, 15, 5459.